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CHAPTER 1

Geometry of oblique splitting subspaces,
minimality and Hankel operators

Abstract

Stochastic realization theory provides a natural theoretical background
for recent identification methods, called subspace methods, which have shown
superior performance for multivariable state-space model-building. The basic
steps of subspace algorithms are geometric operations on certain vector spaces
generated by observed input-output time series which can be interpreted as
“sample versions” of the abstract geometric operations of stochastic realization
theory. The construction of the state space of a stochastic process is one such
basic operation.

In the presence of exogenous inputs the state should be constructed start-
ing from input-output data observed on a finite interval. This and other related
questions still seems to be not completely understood, especially in presence
of feedback from the output process to the input, a situation frequently en-
countered in applications. This is the basic motivation for undertaking a
first-principle analysis of the stochastic realization problem with inputs, as
presented in this paper. It turns out that stochastic realization with inputs is
by no means a trivial extension of the well-established theory for stationary
processes (time-series) and there are fundamentally new concepts involved,
e.g. in the construction of the state space under possible presence of feedback
from the output process to the input. All these new concepts lead to a richer
theory which (although far from being complete) substantially generalizes and
puts what was known for the time series setting in a more general perspective.

1. Introduction

In this paper we shall study the stochastic realization problem with inputs.
Our aim will be to discuss procedures for constructing state space models for
a stationary process y “driven” by an exogenous observable input signal u,
also modelled as a stationary process, of the form

{
x(t + 1) = Ax(t) + Bu(t) + Gw(t)

y(t) = Cx(t) + Du(t) + Jw(t) (1.1)

where w is a normalized white noise process. We will especially be interested
in coordinate-free (i.e. “geometric”) procedures by which one could abstractly
construct state space models of the form (1.1), starting from certain Hilbert
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4 1. OBLIQUE SPLITTING SUBSPACES

spaces of random variables generated by the “data” of the problem, namely
the processes y and u. We shall also characterize some structural properties
of state space models of this kind, like minimality absence of feedback etc.

Stochastic realization theory lies at the grounds of a recent identification
methodology, called subspace identification, which has shown superior perfor-
mance especially for multivariable state-space model-building, and has been
intensively investigated in the past ten years [11, 18, 19, 16, 27]. The ba-
sic steps of subspace algorithms are geometric operations on certain vector
spaces generated by observed input-output time series. These operations can
be interpreted as “sample versions” of certain abstract geometric operations of
stochastic realization theory [16, 22, 24]. In fact, it is by now well understood
that stochastic realization theory provides a natural theoretical background
for subspace identification of time-series (no inputs). The celebrated subspace
algorithm of [18] uses the sample-version of a standard geometric construction
of the state space (projection of the future onto the past) and computes the
G, J parameters of the model by solving the Riccati equation of stochastic
realization.

The situation is unfortunately not as clear for identification in the presence
of exogenous inputs. Some basic conceptual issues underlying the algorithms
remain unclear (see [4]). One such issue is how the state space of a stochastic
process in the presence of exogenous inputs should be constructed starting
from input-output data observed on a finite interval. This and other related
questions are examined in the recent paper [4]. On the basis of the analysis of
this paper, one may be led to conclude that all identification procedures with
inputs appeared so far in the literature use ad hoc approximations of the basic
step of state-space construction of the output process y, and can only lead to
suboptimal performance.

This state of affairs is the basic motivation for undertaking a first-principle
analysis of the stochastic realization problem with inputs, as presented in
this paper. We warn the reader that stochastic realization with inputs is
not a trivial extension of the well-established theory for stationary processes
(time-series) as there are fundamentally new concepts involved, relating to
the construction of the state space, like the possible presence of feedback [7, 6]
from the output process to the input, the diverse notion of minimality etc.. All
these new concepts lead to a richer theory which substantially generalizes and
puts what was known for the time series setting in a more general perspective.

In order to construct state-space descriptions of y driven by a non-white
process u of the above form it is necessary to generalize the theory of sto-
chastic realization of [14, 15]. The construction presented here is based on
an extension of the idea of Markovian splitting subspace which will be called
oblique Markovian splitting subspace, a concept introduced in [24, 10]. For
this reason we shall start the paper by studying oblique projections in a Hilbert
space context.
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2. Oblique Projections

Let H be a Hilbert space of real zero-mean random variables with inner
product

〈x, z〉 := E {xz} (2.1)

the operator E denoting mathematical expectation. All through this paper
we shall denote direct sum of subspaces by the symbol +. The symbol ⊕ will
be reserved for orthogonal direct sum. Consider a pair of closed subspaces
A, B of H which are in direct sum, i.e. A ∩ B = {0} so that every element
v ∈ A + B can be uniquely decomposed in the sum

v = vA + vB, vA ∈ A vB ∈ B

It follows that the orthogonal projection of a random variable z ∈ H, on A+B

admits the unique decomposition

E [ z | A + B ] = zA + zB

the two components zA and zB being, by definition, the oblique projection of
z onto A along B and the oblique projection of z onto B along A, denoted by
the symbols

zA = E ‖B [ z | A ] , zB = E ‖A [ z | B ]

If A and B are orthogonal, then the oblique projection becomes orthogonal,
i.e.

zA = E ‖B [ z | A ] = E [z | A]

which, trivially, does not depend on B.
Projections of one subspace onto another subspace will be encountered

frequently. We shall denote these objects by

E [B | A ] := span {E [z | A] | z ∈ B }
and

E ‖B [C | A ] := span {E ‖B [ z | A ] | z ∈ C }
The following lemma will be extensively used in the following.

Lemma 2.1. Let A, B, C and D be closed subspaces of H, where B ⊂ C.
Assume that

D ∩ C = {0} (2.2)

and

E [A | D + C] = E [A | D + B] (2.3)

then

E ‖C [A | D] = E ‖B [A | D] (2.4)
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Proof. ¿From (2.2) every a ∈ A can be uniquely decomposed as a =
(aD + aC)⊕ ã where aD ∈ D, aC ∈ C, and ã ⊥ (C + D). It follows from (2.3)
that aC ∈ B and therefore aB = aC, or, more precisely,

E ‖D [a | C ] = E ‖D [ a | B ] a ∈ A

By uniqueness of the orthogonal projection, E [a | D + C] = aD + aB =
E [a | D + B] which implies E ‖C [a | D] = E ‖B [a | D]. This equality obvi-
ously holds for any finite linear combinations of elements of A. To complete
the proof just take closure with respect to the inner product (2.1). ¤

Note that in general the converse implication (2.4)⇒ (2.3) is not true since
E ‖B [aC | D] = 0, does not imply that aC ∈ B but only that E [aC | D + B] =
E [aC | B] = aB, i.e. aC = E [aC | B] ⊕ ãB where ãB ⊥ D + B which is for
instance always the case if CªB ⊥ D.

Also the following lemma will be of primary importance.

Lemma 2.2. Let A, B, C and D be closed subspaces of H where

C ∩D = {0} (2.5)

If B ⊂ C then the following conditions are equivalent:
(1) E ‖D [A | C] = E ‖D [A | B];
(2) E [A | C + D] = E [A | B + D]

Proof. (1 ⇒ 2) By assumption (2.5) every a ∈ A can be uniquely de-
composed as a = (aC + aD)⊕ ã where aC ∈ C, aD ∈ D, and ã ⊥ (C + D). It
follows from (1.) that aC ∈ B; in fact (1.) implies that aC = E ‖D [aC | C] =
E ‖D [aC | B]. Therefore aB = aC. This condition insures that E [a | C + D] =
aB + aD = E [a | B + D] by uniqueness of the orthogonal projection, which,
taking closure, implies (2.).
(2 ⇒ 1) Making use of the same decomposition of a, (2.) implies that E [a | C + D] =
aC+aD = E [a | B + D] and hence by uniqueness aC ∈ B. Therefore aB = aC.
The above condition implies that E ‖D [a | C] = aB = E ‖D [a | B]. To com-
plete the proof just take closure with respect to the inner product, and every-
thing goes trough since all subspaces are closed. ¤

Remark 2.1. While Lemma 2.1 gives conditions for reducing the subspace
along which we project, Lemma 2.2 gives conditions for reducing the subspace
onto which we project. In Lemma 2.2 the conditions are equivalent, while in
Lemma 2.1 only one implication holds. The reason for this is explained in
the proof of lemma 2.1 and, roughly speaking, it amounts to the fact that
condition (2.4) only guarantees that the component aC lying on C of any
element in A (which is uniquely defined), splits uniquely in the orthogonal
sum aC = E [aC | B] ⊕ ãB where ãB ⊥ D and not ãB = 0, which would
be necessary to prove the opposite implication. In lemma 2.2 instead the
condition on the oblique projection actually guarantees that the component
aC lying on C of any element in A is indeed in B.
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How oblique projections can be computed in a finite dimensional setting
is addressed in Lemma 1 of [10].

3. Notations and Basic Assumptions

The Hilbert space setting for the study of second-order stationary processes
is standard. Here we shall work in discrete time t = . . . ,−1, 0, 1, . . . , and
make the assumption that all processes involved are jointly (second-order)
stationary and with zero mean. The m + p-dimensional joint process [y u]′
will be assumed purely non deterministic and of full rank [26]. Sometimes we
shall make the assumption of rational spectral densities in order to work with
finite-dimensional realizations, however the geometric theory described in this
paper is completely general and works also in the infinite dimensional case.

For −∞ < t < +∞ introduce the linear subspaces of second order random
variables

U−t := span {uk(s); k = 1, . . . , p, s < t }
Y−t := span {yk(s); k = 1, . . . , m, s < t }

where the bar denotes closure with respect to the metric induced by the inner
product (2.1). These are the Hilbert spaces of random variables spanned by
the infinite past of u and y up to time t. By convention the past spaces do
not include the present. We shall call

Pt := U−t ∨ Y−t

(the ∨ denotes closed vector sum) the joint past space of the input and output
processes at time t.

Subspaces spanned by random variables at just one time instant are simply
denoted Ut, Yt, etc. while the spaces generated by the whole time history of
u and y we shall use the symbols U, Y, respectively.

The shift operator σ is a unitary map defined on a dense subset of U ∨ Y

by the assignment

σ(
∑

k a′ky(tk) +
∑

b′ju(tj)) := (
∑

k a′ky(tk + 1) +
∑

b′ju(tj + 1))

ak ∈ Rm, bj ∈ Rp, tk, tj ∈ Z
Because of stationarity σ can be extended to the whole space as a unitary
operator, see e.g. [26].

The processes y and u propagate in time by the shift operator (e.g. y(t) =
σ>y(0)); this in particular implies that all relations involving random variables
of U ∨ Y which are valid at a certain instant of time t, by applying the shift
operator on both sides of the relation, are seen to be also automatically valid
at any other time. For this reason all definitions and statements this paper
involving subspaces or random variables defined at a certain time instant t are
to be understood as holding also for arbitrary t ∈ Z.
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3.1. Conditional Orthogonality. We say that two subspaces A and B

of a Hilbert space H are conditionally orthogonal given a third subspace X if

〈α− E X α, β − EXβ〉 = 0 for α ∈ A, β ∈ B (3.1)

and we shall denote this A ⊥ B | X. When X = 0, this reduces to the usual
orthogonality A ⊥ B. Conditional orthogonality is orthogonality after sub-
tracting the projections on X. Using the definition of the projection operator
EX, it is straightforward to see that (3.1) may also be written

〈EXα,EXβ〉 = 〈α, β〉 for α ∈ A, β ∈ B. (3.2)

The following lemma is a trivial consequence of the definition.

Lemma 3.1. If A ⊥ B | X, then A0 ⊥ B0 | X for all A0 ⊂ A and B0 ⊂ B.

Let A ⊕ B denote the orthogonal direct sum of A and B. If C = A ⊕ B,
then B = C ª A is the orthogonal complement of A in C. The following
Proposition from [14, 15] describes some useful alternative characterizations
of conditional orthogonality.

Lemma 3.2. The following statements are equivalent.
(i) A ⊥ B | X
(ii) B ⊥ A | X
(iii) (A ∨ X) ⊥ B | X
(iv) EA∨Xβ = EXβ for β ∈ B

(v) (A ∨ X)ª X ⊥ B

(vi) EAβ = EAEXβ for β ∈ B

3.2. Feedback. Let y and u be two jointly stationary vector stochastic
processes. In general one may express both y(t) and u(t) as a sum of the best
linear estimate based on the past of the other variable, plus “noise”

y(t) = E [y(t) | U−t+1 ] + d(t) (3.3a)

u(t) = E [u(t) | Y−t+1 ] + r(t) (3.3b)

so that each variable y(t) and u(t) can be expressed as a sum of a causal linear
transformation of the past of the other, plus “noise”. Here the noise terms
are uncorrelated with the past of u and y respectively, but may in general be
mutually correlated.

Since both linear estimators above can be expressed as the output of linear
filters, represented by causal transfer functions F (z) and H(z), the joint model
(3.3) corresponds to a feedback interconnection of the type

where (in symbolic “Z-transform” notation)

d(t) = G(z)w(t) r(t) = K(z)er(t)

in which G(z), K(z) may be assumed, without loss of generality, minimum
phase spectral factors of the spectra Φd(z) and Φr(z) of the two stationary
“error” (or “disturbance”) signals d and r.
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Figure 1. Feedback model of the processes y and u.

In this scheme the “errors” r and d are in general correlated. More useful
are feedback schemes which involve uncorrelated error processes, since in phys-
ical models of feedback systems this will more usually be the situation. It can
be shown that any pair of jointly stationary processes can also be represented
by schemes of this last type. In this case however, although the overall inter-
connection must be internally stable, the individual transfer functions F (z)
and H(z) may well be unstable; see [6] for a detailed discussion.

Following Granger [8], and subsequent work by Caines, Chan, Anderson,
Gevers etc. [3, 7, 6] we say that there is no feedback from y to u if the future
of u is conditionally uncorrelated with the past of y, given the past of u itself.
In our Hilbert space framework this is written as

U+
t ⊥ Y−t | U−t (3.4)

This condition expresses the fact that the future time evolution of the process u
is not “influenced” by the past of y once the past of u is known. This captures
in a coordinate free way the absence of feedback (from y to u). Taking A = U+

t

in condition (iii) of Lemma 3.2 above, the feedback-free condition is seen to be
equivalent to Y−t ⊥ U | U−t and hence, from (iv), to E {Y−t | U} = E{Y−t | U−t },
so that

E{y(t) | U} = E{y(t) | U−t+1}, for all t ∈ Z, (3.5)

meaning that E{y(t) | U} depends only on the past and present values of
the process u but not on its future history. We take this as the definition of
causality. In this case (and only in this case), it is appropriate to call u an
input variable. One says that there is causality from u to y (or u “causes” y).

Let us consider the feedback interconnection of fig. 1 and let F = NF D−1
F ,

H = D−1
H NH be coprime matrix fraction descriptions of the transfer functions

of the direct and feedback channel. An important technical condition often
used in this this paper is that the input process is “sufficiently rich”, in the
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sense that U admits the direct sum decomposition U = U−t + U+
t for all t.

Obviously, sufficient richness is equivalent to

U−t ∩ U+
t = {0} (3.6)

Various conditions ensuring sufficient richness are known. For example, it is
well-known that for a full-rank p.n.d. process u to be sufficiently rich it is
necessary and sufficient that the determinant of the spectral density matrix
Φu should have no zeros on the unit circle [9]. Using this criterion the following
result follows readily.

Lemma 3.3. The input process is sufficiently rich, i.e. Φu does not have
unitary zeros, if and only if both of the following conditions are satisfied:

(1) DF has no zeros on the unit circle
(2) NHG and DHK do not have common zeros on the unit circle with

coincident corresponding left zero directions (this we simply say: do
not vanish simultaneously on the unit circle).

4. Oblique Markovian Splitting Subspaces

The idea of (stochastic) state space is the fundamental concept of sto-
chastic realization theory. In the classical setting, i.e. stochastic time series
modelling, a state space is characterized by the property of being a Markovian
splitting subspace [14, 15]. This idea captures in a coordinate-free way the
structure of stochastic state-space models and lies at the grounds of their many
useful properties. Realization of stochastic processes (without inputs) has been
investigated by a number of authors, including [21, 2, 1, 13, 17, 14, 15].

The intuitive idea of a stochastic state space model with inputs is different
from that of a state-space model of a single process since in the former type
of models one wants to describe the effect of the exogenous input u on the
output process without modeling the dynamics of u. This is also in agreement
with the aim of most identification experiments, where one is interested in
describing the dynamics of the “open loop” system only and does not want
to worry about finding a dynamic description of u at all. Hence the concept
of state-space has to be generalized to the new setting. This will lead to
the introduction of the concepts of oblique (conditional) Markov and oblique
(conditional) splitting. The idea behind these definitions is to factor out the
dynamics of the input process, which should not be modeled explicitly. When
applying classical realization theory to the joint input-output process (y u)
the dynamics of u will also be modeled.

At the end of the paper we shall see some connections between classical
stochastic realizations of the joint input-output process and realization of y
in terms of u as we are studying in this chapter.

Note that since the input is an observed variable, one is generally interested
in realization which are causal with respect to u. For this reason in this
more general setting one should not expect the same mathematical symmetry
between past and future as in the time-series case.
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A source of difficulty in dealing with realization with inputs is the possible
presence of feedback from y to u. In this paper we shall strive to keep a certain
level of generality without making too restrictive assumptions regarding the
presence of feedback between y and u. Dealing with feedback is a necessity
in the design of identification algorithms and the complications we incur are
not searched for just for academic sake of generality.

Later on we shall specialize to the case when there is no feedback from y
to u and a much simpler and elegant theory will emerge.

All Hilbert spaces that we consider will be subspaces of an ambient Hilbert
space H containing U and Y and equipped with a shift operator under which y
and u are jointly stationary. We shall also assume that H has a finite number
of generators i.e. there are N < ∞ random variables {h1, . . . , hN} such that

span {σ>hk | k = 1, . . . , N, t ∈ Z} = H

This is sometimes referred to by saying that H (or the shift σ acting on H)
has finite multiplicity. The multiplicity is certainly finite in the interesting
special case where

H = Y ∨ U (4.1)

Let X be a subspace of H and define the stationary family of translates,
{Xt}, by: Xt := σ>X, t ∈ Z. The past and future of {Xt} at time t are

X−t := ∨s<tXs, X+
t := ∨s≥tXs.

Generalizing a construction of stochastic realization theory (see e.g. [14]),
we define a pair of subspaces

(
S, S̄

)
attached to a given X, as follows:

S = P− ∨ X− (4.2)

where P− is a shorthand for the joint past space P−t := U−t ∨Y−t at time t = 0;
S will be called the incoming subspace associated to X, while

S̄ = Y+ ∨ X+ (4.3)

will be called the corresponding outgoing subspace.
Recall that in classical stochastic realization the subspaces S and S̄ are

incoming and outgoing subspaces for the shift σ, in the sense of Lax-Phillips
Scattering Theory [20]. In the present setting S̄ is not outgoing as it does not
satisfy ∪tS̄t = H. However, it will turn out to be convenient to keep the same
terminology to make connections with classical stochastic realization theory,
especially when studying minimality. Later we shall also introduce “extended”
versions of S and S̄ which will in fact be incoming and outgoing subspaces in
the sense of Lax-Phillips.

Definition 4.1. The family {St} is (forward) purely-non-deterministic
(p.n.d.) if

⋂

t<0

St = {0} (4.4)
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The subspace X is then called (forward) purely-non-deterministic (p.n.d.)
whenever the associated incoming subspace has the p.n.d. property.

Let us define the sequence of wandering subspaces Wt = σ>W associated
to {St} as:

Wt := St+1 ª (St + Ut) . (4.5)

Lemma 4.1. The wandering subspaces are pairwise orthogonal, i.e. Wt ⊥
Ws, ∀ t 6= s.

Proof. Let us assume t > s; by construction we have Ws ⊆ Ss+1 while
clearly Wt ⊥ St. Since St is non-decreasing (backward-shift invariant), i.e.
Ss ⊆ St, it follows that Wt ⊥ Ss and hence Wt ⊥ Ws. ¤

It follows from (4.5) that the incoming subspace admits the decomposition

St+1 = (St + Ut)⊕Wt (4.6)

For future reference we note the following fact:

Fact 4.1. The future W+
t is orthogonal to St + Ut.

Since H has finite multiplicity, the wandering subspace W is finite-dimensional
and admits an orthonormal basis w(0). It follows that W−

t = H−
t (w) where

w(t) = σ>w(0) is a normalized white noise process which is called the (for-
ward) generating process of X.

The following are basic definitions which capture the notion of state space
in presence of exogenous inputs.

Definition 4.2. The subspace X is (forward) oblique Markovian, if Ut ∩(
X−t+1 ∨ U−t

)
= {0} and the following equality holds:

E||Ut
[ Xt+1 | X−t ∨ U−t ] = E||Ut

[ Xt+1 |Xt]. (4.7)

We shall say that X is causal oblique Markovian if Xt ⊆ P−t .

Note that the condition Ut∩U−t = {0}, necessary for the oblique projection
to be well defined, is implied by the richness Assumption 3.6.

The oblique Markovian condition can be written in terms of conditional
orthogonality as follows:

Proposition 4.1. The oblique Markovian property (4.7) is equivalent to

E
[
Xt+1 |X−t+1 ∨ U−t+1

]
= E[Xt+1 |Xt + Ut] (4.8)

and hence to the following conditional orthogonality property

Xt+1 ⊥
(
X−t ∨ U−t

) | (Xt + Ut) (4.9)

which can be interpreted by saying that Xt is conditionally Markov given Ut.

Proof. Setting A = Xt+1, B = Xt+1, C = X−t ∨U−t and D = Ut in Lemma
2.2 the oblique Markovian property (4.7) is seen to be equivalent to (4.8). The
conditional orthogonality follows from Lemma 3.2. ¤
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To be honest, the oblique Markovian property of the definition should
be named “one-step-ahead” oblique Markovian property. For it is in general
not guaranteed that the sufficient statistic property of Xt holds also when
one wants to predict random variables in the distant future Xt+k, k > 1.
However we shall see later that the extension of the “one-step-ahead” oblique
Markovian property to an arbitrary number of steps ahead, holds when there
is no feedback from x to u, in which case condition (4.7) is equivalent to

E||U+
t

[
X+

t |X−t+1 ∨ U−t
]

= E||U+
t

[
X+

t | Xt

]

Unfortunately in general (4.7) is not equivalent to the above. In fact, we
shall see that the property of sufficient statistics for the whole future will hold
only “conditionally”, given the subspace generated by all future inputs to the
realization with state space Xt, where “inputs” now means input signal which
may be observable and not. To make this precise, we shall have to introduce
the “extended” or joint future input space

F+
t :=

(
U+

t ∨W+
t

)

of the p.n.d. subspace X.
The joint future plays a role in generalizing the fundamental concept of

splitting to the oblique splitting property defined below.

Definition 4.3. A subspace X is (forward) oblique splitting for (Y,U), if

Y+
t ⊥ P−t | [Xt ∨ F+

t

]
(4.10)

We will say that X is a causal oblique splitting subspace if Xt ⊆ P−t .

Condition (4.10) says that once the (real plus unobservable white) future
inputs are given, the information in the present state space Xt, is equivalent
to the knowledge of all the (joint) past history of state input and output, for
the purpose of predicting the future of y. Indeed, provided that

Xt ∩ F+
t = {0}, (4.11)

by using Lemma 2.2, it follows that (4.10) can be expressed using oblique
projections

E‖F+
t

[
Y+

t |Xt ∨ P−t
]

= E‖F+
t

[
Y+

t |Xt

]

Unfortunately, there may be situations in which condition (4.11) does not
hold, for virtually all oblique Markovian splitting subspaces Xt. Intuitively,
this will be the case when the transfer function F (z) in the forward loop in
Fig. 1 is not stable (which can happen, even if the feedback interconnection
is internally stable).

Another difficulty related to the presence of feedback is that it may happen
that (U+ ∨ W+) ∩ (U− ∨ W−) 6= {0}. This fact would make some oblique
projection formulas meaningless.

A sufficient condition for zero intersection is given in following Proposition,
whose proof we shall leave to the reader.
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Proposition 4.2. The joint spectral density matrix Φ"u
w

#, has no zeros

on the unit circle, or, equivalently, (U+∨W+)∩ (U−∨W−) = {0}, if and only
if, with the same notation of remark 3.3, DF DHK does not vanish on the unit
circle.

Note that if there are no inputs, Xt ∨F+
t = Xt ⊕W+

t and condition (4.10)
reduces to

Y+
t ⊥ Y−t | (Xt ⊕W+

t

)

and since W+
t ⊥ Y−t the latter is in turn equivalent to

Y+
t ⊥ Y−t | Xt

which is the usual splitting property.
The oblique Markov and the splitting conditions separately are not enough,

in general, to fully characterize the state space in the presence of inputs. A
condition which implies both (4.10) and (4.7) is the oblique Markovian splitting
property, defined below.

Definition 4.4. A subspace X is an oblique Markovian splitting subspace
for the pair (Y, U) if

Ut ∩
(
X−t+1 ∨ P−t

)
= {0} (4.12)

and

E||Ut
[Yt ∨ Xt+1 |X−t+1 ∨ P−t ] = E||Ut

[Yt ∨ Xt+1 |Xt]. (4.13)

We shall say that X is a causal oblique Markovian splitting subspace if X ⊆ P−

This condition is precisely what is needed for the space X to qualify as a
state space for a stochastic model described by equations of the form (1.1)

Note that the “extended richness condition”

Ut ∩ P−t = {0} (4.14)

is a necessary condition for the oblique projection to be well-defined. This
property will be necessary in order to be able to derive unique state-space
equations.

Proposition 4.3. If the joint spectrum of y and u is coercive then the
zero intersection property (4.14) holds.

Proof. If the joint spectrum is coercive, then one has that

(U+
t ∨ Y+

t ) ∩ (U−t ∨ Y−t ) = {0}
and then in particular (4.14). ¤

Remark 4.5. Again, the property that we would like to hold is

E||U+
t
[Y+

t ∨ X+
t+1 |X−t+1 ∨ P−t ] = E||U+

t
[Y+

t ∨ X+
t+1 |Xt] (4.15)
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however this condition is in general not equivalent to (4.13). In fact, when
feedback is present (the past output space Y−t is not conditionally uncorrelated
with the future inputs U+

t given the past past inputs U−t ), one has

E[Yt |X−t ∨ P−t ∨ U+
t ] 6= E[Yt | ,X−t ∨ P−t ∨ Ut]

so that requiring the stronger condition (4.15) would make the state space
“unnecessarily large”. We shall see later (see Lemma 7.2) that when there is
no feedback from

[
x> y>

]
to u, condition (4.13) is equivalent to (4.15).

The result which follows is in the same spirit of Proposition 4.1.

Proposition 4.4. The oblique Markovian splitting property (4.13) is equiv-
alent to

E
[
Xt+1 ∨ Yt |X−t+1 ∨ Ut ∨ P−t

]
= E[Xt+1 ∨ Yt |Xt + Ut].

(4.16)

and hence to the conditional orthogonality property:

(Xt+1 ∨ Yt) ⊥
(
X−t ∨ P−t

) | (Xt + Ut)

Proof. Letting A = (Xt+1 ∨ Yt), B = Xt, C = X−t+1 ∨ P−t and D = Ut

in Lemma 2.2, the oblique Markovian splitting property (4.13) is seen to be
equivalent to (4.16). ¤

Proposition 4.5. Under condition (4.11) the oblique Markovian splitting
property (4.13) is equivalent to

E
[
X+

t+1 ∨ Y+
t |X−t+1 ∨ F+

t ∨ P−t
]

= E[X+
t+1 ∨ Y+

t |Xt + F+
t ].

(4.17)

which can also be written in form of conditional orthogonality as
(
X+

t+1 ∨ Y+
t

) ⊥ (
X−t ∨ P−t

) | (Xt + F+
t

)

Proof. Assume (4.17) holds. It follows that

E[Xt+1 ∨ Yt |X−t+1 ∨ P−t ∨ F+
t ] ⊆ Xt + F+

t

However, from Xt+1 ∨ Yt ⊆ St+1 we obtain

E[Xt+1 ∨ Yt |X−t+1 ∨ P−t ∨ F+
t ] ⊆ St + Ut ⊕Wt.

Using the fact that (4.11) implies St ∩ F+
t = {0} it must be that

E[Xt+1∨Yt |X−t+1∨P−t ∨Ut∨Wt] = E[Xt+1∨Yt |X−t+1∨P−t ∨F+
t ] ⊆ Xt+Ut⊕Wt

which clearly implies (4.13). The proof of the converse will be given after
Theorem 4.6. ¤

Corollary 4.1. Under condition (4.11) the oblique Markovian splitting
property (4.13) is equivalent to

E‖F+
t

[
X+

t+1 ∨ Y+
t |X−t+1 ∨ P−t

]
= E‖F+

t

[
X+

t+1 ∨ Y+
t |Xt

]
.

(4.18)
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Proof. Setting A =
(
X+

t+1 ∨ Y+
t

)
, B = Xt, C = X−t+1 ∨ P−t and D = F+

t

in Lemma 2.2, we have that (4.18) is equivalent to (4.17) and therefore, from
Proposition 4.5 to (4.13). ¤

The following result is a coordinate-free version of the equivalence between
oblique Markovian splitting property and representability by a state space
model of the form (1.1). The Theorem holds without finite dimensionality
assumptions.

Theorem 4.6. Let Xt be a p.n.d. oblique Markovian splitting subspace for
(Y, U); then the following inclusions hold

Xt+1 ⊆ (Xt + Ut)⊕Wt (4.19)

Yt ⊆ (Xt + Ut)⊕Wt (4.20)

Proof. Since Xt+1 ⊆ St+1 using the decomposition St+1 = (St + Ut)⊕Wt

we obtain :
Xt+1 = E [Xt+1 | St+1]

= E [Xt+1 | (St + Ut)⊕Wt]
⊆ E [Xt+1 | (St + Ut)]⊕Wt

⊆ (
E||Ut

[Xt+1 | St] + Ut

)⊕Wt

⊆ (Xt + Ut)⊕Wt

where the last equality follows from (4.13). A completely analogous derivation
holds for the second inclusion. ¤

We can now complete the proof of Proposition 4.5. To this purpose it will
be handy to introduce a notation for vector sum of subspaces of the type

U[ t, t+k ) := Ut + Ut+1 + . . . + Ut+k−1

Similar notations will be used without further comments in the following.
Proof of Proposition 4.5 Conversely, assume (4.13) holds. It follows from

Theorem 4.6 that, for every k ≥ 0

Xt+k+1 ∨ Yt+k ⊆ Xt + U[ t, t+k ) + W[ t, t+k )

which implies that
X+

t+1 ∨ Y+
t ⊆ Xt + U+

t + W+
t

and therefore (4.17). 2

When X is finite-dimensional, we can obtain state-space representations of
the form (1.1) just by choosing a basis in the subspaces X and W. Conversely,
given a finite-dimensional state-space model of the form (1.1), it is easy to
check that the subspace generated by the components of the state vector

Xt := span {x1(t), . . . ,xn(t) }
is an oblique Markovian splitting subspace. We shall leave this check to the
reader.
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By using the representation Theorem 4.6 we can show that the oblique
Markovian splitting property implies both the oblique Markovian and the
oblique splitting property.

Proposition 4.6. The oblique Markovian splitting property implies oblique
Markovian and oblique splitting, i.e. (4.13) implies both (4.7) and (4.10).

Proof. Projecting both members of (4.19 ) along Ut we obtain

E‖Ut

[
Xt+1 | Xt ∨ U−t

] ⊂ Xt

which is the oblique Markovian property (4.7). Combining (4.20 ) and (4.19)
we obtain

Y+
t ⊆ Xt ∨ U+

t ∨W+
t = Xt ∨ F+

t

which implies (4.10). If (4.11) holds, the projection of any element y+ ∈ Y+
t

onto Xt ∨ P−t along F+
t is equal to the projection of its (unique in this case)

component in Xt. In other words

E‖F+
t

[
y+ |Xt ∨ P−t

]
= E‖F+

t

[
y+ |Xt

]
, y+ ∈ Y+

t .

¤

5. Acausality of Realizations with Feedback

Stationary models for the pair (y, u) of the form (1.1), or in symbolic
(z-transform) notation,

y(t) = F (z)u(t) + G(z)w(t)

tend to give for granted that y depends causally on the input signals u, w.
This is in general false if we are in the presence of feedback.

Certainly causality holds as long as F (z) and G(z) are stable, or, equiva-
lently, |λ(A)| < 1 in the model (1.1). However, in the presence of feedback the
pair (y, u) may well be stationary even if F (z) is not stable. In this situation,
the eigenvalues of A may lie anywhere, in particular some may be (strictly)
outside of the unit circle. Then, the customary interpretation of the state
space model (1.1) as a forward difference equation, does not make sense. Un-
stable modes must be integrated backwards see [25]. In general when there is
feedback, past outputs may be influenced by future inputs, which, according
to what has been seen above, means that the model is not causal. We shall
briefly analyze how this acausality shows up and what are the consequences.
For simplicity of exposition we analyze only the finite dimensional case.

Consider a basis for (1.1) so that the matrix A is of the block-diagonal
form

A =




A− 0 0
0 A0 0
0 0 A+


 (5.1)

where |λ(A−)| < 1, |λ(A0)| = 1, |λ(A+)| > 1. Correspondingly we shall
denote with X− the “stable manifold”, with X+ the “unstable manifold” and
with X0 the “central manifold” of the state space. The symbols x−, x+ and
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x0 will denote the bases in the corresponding spaces. A similar meaning will
be attributed to the symbols B−, B+, B0, G−, G+ and G0. Hence the state
space equation can be rewritten in decoupled from as follows:





x−(t + 1) = A−x−(t) + B−u(t) + G−w(t)
x0(t + 1) = A0x0(t) + B0u(t) + G0w(t)
x−(t + 1) = A+x+(t) + B+u(t) + G+w(t)

(5.2)

The three difference equation can be thought of as running forward, for-
ward or backward, and backward respectively. The interpretation of the equa-
tion on the “central manifold” is somewhat delicate and we shall not insist
on this point here, however see [5, p. 105]. May it suffice to say that this
component belongs to both past U−t ∨W−

t and future U+
t ∨W+

t . This is not a
contradiction as pointed out in remark 4.2. Concerning the first and the third
block, it is trivial to recognize that these may be thought as a stable difference
equation running forward and an unstable difference equation running back-
ward in time. This implies that x−(t) ∈ U−t ∨W−

t and x+(t) ∈ U+
t ∨W+

t = F+
t .

From this we see that in general one cannot assume that Xt ∩F+
t = {0}. This

fact is the source of a number of complications.
To avoid these complications we shall henceforth restrict to the case |λ(A)| <

1 (i.e. we have a feedback interconnection with a stable forward loop trans-
fer function F (z)) and postpone the discussion of the general case to future
publications.

We formalize this assumption below.

Assumption 5.1. The joint spectrum of u and w is coercive (see remark
4.2) and the poles of F (z) lie strictly inside the unit circle.

5.1. Observability, Constructibility and Minimality. Minimality is
a fundamental property of state space models. The concept can be described
purely in geometrical terms as in the following definition

Definition 5.2. An oblique Markovian splitting subspace X is minimal if
it does not contain properly other oblique Markovian splitting subspaces.

Structural properties which are instrumental in the study of minimality are
observability and constructibility of an oblique Markovian splitting subspace
Xt. One measures the “observability” of Xt on the basis of its “ability” of
predicting future outputs “given” (in an appropriate sense), the future inputs.

Let Xt be an oblique Markovian splitting subspace, and introduce the
(adjoint) observability operator

O∗ : Y+ → X , O∗λ := E‖F+ [λ | X] , λ ∈ Y+ (5.3)

The subspace

Xo
t := Range O∗ = E‖F+

t

[
Y+

t | Xt

]
(5.4)

will be called the observable subspace of Xt given F+
t .
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Definition 5.3. We shall say that Xt is observable given F+
t if Xo

t = Xt

or, equivalently, if the operator O∗ has dense range.

Similarly we may consider the “constructibility” property of Xt. Let

K : X → P− , Kξ := E‖F+

[
ξ | P−]

, ξ ∈ X. (5.5)

be the “constructibility” operator. It measures the degree of predictability of
an element of X based on the joint past P− given the future inputs F+.

Definition 5.4. Let Xt be an oblique Markovian splitting subspace. The
closure of the range of the adjoint constructibility operator is called the “con-
structible part” of Xt and denoted as Xc

t .
We shall say that Xt is constructible if Xc

t = Xt.

Proposition 5.1. The constructible part Xc
t of Xt is given by:

Xc
t = Xt ªKer K

Proof. This is immediate from the fact that

H = Range C∗ ⊕ (Ker K)⊥

for any bounded linear operator. ¤
A central goal of this paper will be to prove the following criterion for

minimality. The proof will be given in the following.

Theorem 5.5. An oblique Markovian splitting subspace X is minimal if
and only if it is both observable and constructible.

5.2. Causal Oblique Markovian Splitting Subspaces. In this sec-
tion we will restrict our attention to causal oblique Markovian splitting sub-
spaces, namely we will require that

X ⊆ P−. (5.6)

In this case clearly
∞∨

t=−∞
Xt ⊂ Y ∨ U

and hence the ambient space can be taken to be

H = Y ∨ U. (5.7)

The corresponding realizations are called “internal”. The motivation for this
restriction is that in system identification we want to construct the state space
from the available data, which (ideally) generate the subspace Y ∨ U.

Once we restrict to the causal situation, since (5.6) implies that X− ⊆ P−,
the incoming subspace is given by

S = X− ∨ P− = P−.

Therefore the incoming subspace coincides with P− in the causal situation.
We shall denote by Et the wandering subspace which generates P−

P−t+1 =
(
P−t + Ut

)⊕ Et (5.8)
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Note that P− is p.n.d. by assumption.
Assumption 5.1 allows to ”iterate” (5.8) so that

P−t+1 =
(
E−t + U−t+1

)⊕ Et

It is common use to take as a basis for Et the innovation e(t) defined by

e(t) := y(t)− E
[
y(t) | P−t ∨ Ut

]
(5.9)

which is a (non normalized) white noise process whose variance is positive
definite by the full-rank assumption.

We are eventually in a position to give a procedure to construct an oblique
Markovian splitting subspace. The construction is motivated by the definition
of observability (5.4) 1

Define the oblique predictor space X
+/−
t at time t as follows; let Gt := Ut⊕Et

and let

X
+/−
t := E‖G+

t

[
Y+

t | P−t
]

(5.10)

Obviously X
+/−
t is contained in P−t and is oblique splitting. Let us prove that

it is oblique Markovian splitting.

Proposition 5.2. The predictor space X
+/−
t is a causal oblique Markovian

splitting subspace

Proof. It suffices to prove that

E||G+
t

[
X

+/−
t+1 | P−t

]
⊆ X

+/−
t

but this is trivial since

E||G+
t

[
X

+/−
t+1 | P−t

]
= E||G+

t

[
E||G+

t+1

[
Y+

t+1 | P−t+1

] | P−t
]

= E||G+
t

[
E

[
Y+

t+1 | P−t+1 + G+
t+1

] | P−t
]

= E||G+
t

[
Y+

t+1 | P−t
]

⊆ X
+/−
t

where the last equality follows from the fact that H = P−t + G+
t . ¤

As we have anticipated in Theorem 5.5 minimality is equivalent to both
constructibility and observability. Clearly in the casual case constructibility is
granted for free and therefore one just need to check observability. However,
for the oblique predictor space a proof of minimality can be given directly.

Proposition 5.3. The oblique predictor space is the minimal causal oblique
Markovian splitting subspace, in the sense that

X
+/−
t ⊆ Xt

for every causal oblique Markovian splitting subspace X.

1Note that any causal oblique Markovian splitting subspace will be constructible by
construction.
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Proof. From the fact that St = X−t ∨ P−t = P−t we obtain

X
+/−
t = E‖G+

t

[
Y+

t | P−t
] ⊆ Xt

from which the statement follows. ¤

Note that in order to construct the oblique predictor space we have used
the “innovation” space Et. Theoretically one could construct the innovation
space E starting form the “data” Y and U, using (5.8), and after that construct
X

+/−
t .

There is, however, a direct construction which, although somewhat com-
plicated, permits to skip the first step of this procedure.

Proposition 5.4. Define the k step ahead (oblique) predictor space

Xk
t := E‖G+

t

[
Yt+k | P−t

]

= E‖Ut

[
E‖Ut+1

[· · ·E‖Ut+k

[
Yt+k | P−t+k

] · · · | P−t+1

] | P−t
]

(5.11)

Then the oblique predictor space can be computed as the (closed) infinite vector
sum

X
+/−
t =

∨

k≥0

Xk
t (5.12)

Proof. We just need to show that (5.11) holds true. From Theorem 4.6
we have

Yt+k ⊆
(
X

+/−
t+k + Ut+k

)
⊕ Et+k

and

X
+/−
t+h ⊆

(
X

+/−
t+h−1 + Ut+h−1

)
⊕ Et+h−1.

These two conditions imply that

E‖Ut+k

[
Yt+k | P−t+k

] ⊆ X
+/−
t+k

and

E‖Ut+h

[
Xt+h+1 | P−t+h

] ⊆ X
+/−
t+h

which, together with

Yt+k ⊆ X
+/−
t + U[ t, t+k ) + E[ t, t+k )

imply (5.11). ¤

Remark 5.6. Note that in the finite dimensional case the sum (5.12) can
be limited to n terms, where n is the dimension of a minimal causal realization.
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6. Scattering Representations of Oblique Markovian Splitting
Subspaces

In this section we shall establish some general properties of oblique Mar-
kovian splitting subspaces in order to facilitate the study of minimality.

Let X be an oblique Markovian splitting subspace and let S defined by
(4.2) and S̄, defined by (4.3) be the associated incoming-outgoing pair. The
oblique Markovian splitting property (4.13) can be written as

E||F+ [S̄ | S] = E||F+ [S̄ |X]. (6.1)

The following Lemma gives a formal characterization of any oblique Mar-
kovian splitting subspace as the oblique predictor space of the outgoing sub-
space.

Lemma 6.1. Let (S, S̄) and F+ be as defined above. Then

X = E||F+ [S̄ | S]

hence every X is the oblique predictor space of S̄, given S, along F+.

Proof. Every element s̄ of S̄ has the form s̄ = y + x, y ∈ Y+, x ∈ X+

so that E||U+ [y | S] = E||F+ [y |X] ∈ X ⊆ S. On the other hand, by definition
of oblique splitting we have

E||F+ [x | S] = E||F+ [x |X] x ∈ X+,

therefore
span{E||F+ [s̄ | S] |s̄ ∈ S̄} = X.

This implies that X is the oblique predictor space of S̄ given S along F+. ¤
Lemma 6.2. Let (S, S̄) be as above. Then

X = S̄ ∩ S (6.2)

Proof. The fact that X ⊆ S̄∩S is trivial. Let us show the other inclusion.
Let s̄ ∈ S̄ ∩ S; then s̄ ∈ S̄ and s̄ ∈ S. Therefore

s̄ = E||F+ [s̄ | S] = E||F+ [s̄ |X] ∈ X.

¤
The following proposition is a generalization of the perpendicular intersection
property known for ”orthogonal” splitting subspaces.

Proposition 6.1. Let X be an oblique Markovian splitting subspace and
let S, S̄ be the relative incoming-outgoing pair of subspaces. Then the following
oblique intersection property holds:

S̄ ⊥ S | (
X + F+

)
(6.3)

Proof. Condition (7.3), is equivalent to (see Lemma 2.2)

E[S̄ | S + F+] = E[S̄ |X + F+]

which by (6.2) is precisely the oblique intersection property (6.3). ¤
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The following theorem gives an “almost” one-to-one correspondence be-
tween oblique Markovian splitting subspaces and “scattering pairs”.

Theorem 6.1. Let H be a Hilbert space of random variables with shift
operator σ and let X be a subspace of H such that

H = Y ∨ U ∨
(∨

t

Xt

)
.

Then X is an oblique Markovian splitting subspace, if and only if

X = S̄ ∩ S

for some pair of subspaces S, S̄ such that the following properties hold
(1) Extended past and future property

{
Y+ ⊆ S̄

P− ⊆ S , S ∩ F+ = {0}
(2) Shift-invariance {

σS̄ ⊆ S̄

σ∗S ⊆ S

(3) Oblique intersection at X

S̄ ⊥ S | ((
S̄ ∩ S

)
+ F+

)

Conversely, given an oblique Markovian splitting subspace X, a pair of sub-
spaces satisfying conditions 1), 2), 3), can be constructed as follows

S = P− ∨ X− , Y+ ∨ X+ ⊆ S̄ ⊆ Y+ ∨ X+ ∨ U+. (6.4)

The minimal subspace S̄ satisfying 1), 2), and 3) (i.e. contained in any other
S̄ satisfying 1), 2), and 3)), is given by

S̄ = Y+ ∨ X+

Proof. Let X be an oblique Markovian splitting subspace, then S = P−∨
X− and S̄ = Y+∨X+ satisfy the assumptions above and X = S̄∩S. Conversely,
let S, S̄ be subspaces of H which satisfies the conditions above. Define the
subspace X = S̄∩S; then by assumptions 1) and 2) we have that P− ∨X− ⊆ S

and Y+ ∨ X+ ⊆ S̄, which by the oblique intersection property 3) implies that
(
Y+ ∨ X+

) ⊥ (
P− ∨ X−

) | (X + F+
)
. (6.5)

By lemma 2.2 condition (6.5) is equivalent to the oblique Markovian splitting
property (4.13).

Let us prove that S and S̄ are given by (6.4). We have already pointed
out that Sm := P− ∨ X− ⊆ S. Assume the inclusion is strict; then since
S ⊆ H = Sm ∨ S̄ ∨ U+, s ∈ S can be written as: s = sm + s̄ + u where
sm ∈ Sm, s̄ ∈ S̄, u ∈ U+. Therefore we have:

s = E‖F+ [s|S] = sm + E‖F+ [s̄|S] = sm + x
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where x ∈ X ⊆ Sm which contradict the hypothesis that s /∈ Sm.
Similarly, we have seen that S̄m := Y+∨X+ ⊆ S̄. Assume (Y+ ∨ X+ ∨ U+) ⊂ S̄

strictly. Then, since Y+ ∨ X+ ∨ U+ ∨ Sm = H, there exists s̄ ∈ S̄, s /∈
(Y+ ∨ X+ ∨ U+) which lies in Sm. Therefore s̄ ∈ X, and hence s̄ ∈ S̄m which
contradicts the hypothesis. Requiring S̄ to be minimal implies that S̄m = S̄

since S̄m ⊆ S̄. ¤

The question of minimality of oblique Markovian splitting subspaces can be
rephrased as a question of minimality for the subspaces S and S̄. In fact, given
a Markovian splitting subspace X and the corresponding pair (S, S̄), reducing
(S, S̄) without violating the properties 1), 2) and 3) of theorem 6.1 amounts
to constructing an oblique Markovian splitting subspace which is contained in
X.

6.1. Scattering Pairs and Minimality. Our aim in this section is to
adapt to oblique splitting subspaces a construction inspired by a similar proce-
dure in stochastic realization theory, [14], which allows to construct a minimal
Markovian splitting subspace starting from an arbitrarily “large” scattering
pair

(
S, S̄

)
of perpendicularly intersecting subspaces. As it will be clear in a

little while, we will only be able to draw a completely parallel construction in
case of absence of feedback.

The construction of a minimal Markovian splitting subspace can be done
in principle by reducing (in the sense of subspace inclusion) the subspaces(
S, S̄

)
without violating properties 1), 2) and 3) of Theorem 6.1.

Before doing so we shall clarify the geometric meaning of constructibility
and observability.

Proposition 6.2. Let X be an oblique Markovian splitting subspace and
let

(
S, S̄

)
be the scattering pair associated to it. Let us introduce the extended

scattering pair, Se := S + F+ and S̄e := S̄ ∨ F+. Then X is observable if and
only if

S̄e = S⊥e ∨ Y+ ∨ F+ (6.6)

and constructible if and only if

Se = S̄⊥e ∨ P− ∨ F+. (6.7)

Proof. Assume (6.6) holds. Since by definition S⊥e ⊥ (S + F+) then

X = E‖F+

[
S̄ | S]

= E‖F+

[
S̄e | X

]
= E‖F+ [Y+ | X]

which is observability. Conversely, if X is observable

X + F+ = E
[
Y+ ∨ F+ | X + F+

]

which is in turn equivalent to
(
Y+ ∨ F+

)⊥ ∩ (
X + F+

)
= {0}
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Taking orthogonal complements we can rewrite

Y+ ∨ F+ ∨ (
X + F+

)⊥ = H;

since (
X + F+

)
= Se ∩ S̄e

and S⊥e ⊆ S̄e the following orthogonal decomposition holds

H = S̄⊥e ⊕
(
S⊥e ∨ Y+ ∨ F+

)

from which the conclusion follows.
As far as constructibility is concerned, assume X is not constructible. There
exist x ∈ X such that E‖F+ [x | P−] = 0, i.e. x ∈ F+ ⊕ (P− + F+)⊥ and
therefore can be uniquely decomposed as x = xf ⊕ x̃f where xf ∈ F+ and
x̃f ∈ (P− + F+)⊥. Note that x̃f 6= 0 since X ∩ F+ = {0}. It follows that
x̃f ∈ Se

t ∩ S̄e
t . This condition insures that x̃f ⊥

(
S̄e

)⊥ ∨P− ∨F+ and therefore
x̃f 6∈

(
S̄e

)⊥ ∨ P− ∨ F+ which implies Se ⊂ (
S̄e

)⊥ ∨ P− ∨ F+ strictly.
Conversely, assume Se ⊂ (

S̄e
)⊥∨P−∨F+ strictly. Then there exists s ∈ Se and

s ∈
[(

S̄e
)⊥ ∨ P− ∨ F+

]⊥
or, alternatively, s ∈ S̄e ∩ (P− + F+)⊥. Therefore

s ∈ Se
t ∩ Se ∩ (P− + F+)⊥ = (X + F+) ∩ (P− + F+)⊥. The last condition

insures that s = sx + sf , sx ∈ X, sf ∈ F+, and, for obvious reasons sx 6= 0.
Writing sx = s − sf we have that sx ∈ X ∩ F+ ⊕ (P− + F+)⊥ contradicting
constructibility, which concludes the proof. ¤

We shall now introduce an orthogonal intersection property which is implied
by the oblique intersection.

Lemma 6.3. Let
(
S, S̄

)
satisfy the oblique intersection property

S ⊥ S̄ | (X + F+
)
.

Then the extended subspaces Se = S ∨ F+ and S̄e = S̄ ∨ F+ intersect
perpendicularly, i.e.

Se ⊥ S̄e |
(
Se ∩ S̄e

)
.

Proof. The proof follows readily from Theorem 2.1 in [14] ¤

Making use of this lemma we obtain immediately the following orthogonal
decomposition of the ambient space H which is analogous to the one valid in
stochastic realization for time series, and plays an important role in many
structural questions in stochastic systems theory.

Theorem 6.2. Let X be an oblique Markovian splitting subspace and (Se, S̄e)
the associated extended scattering pair. Then the following orthogonal decom-
position holds

H = S⊥e ⊕
(
X + F+

)⊕ S̄⊥e (6.8)
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The characterization of oblique Markovian splitting subspaces in terms of
their scattering pair is a fundamental tool to study minimality. As we have
seen an oblique Markovian splitting subspace can always be represented as
the intersection of S and S̄. These subspaces, or more precisely their extended
versions are related to observability and constructibility. Apparently, failing
either of them, these subspace are not ”minimal”, in the sense of proposition
6.2. At this point, following classical stochastic realization theory, we would
need a procedure to reduce, if possible, the subspaces S and S̄. Unfortunately
such a procedure is not yet available and at this point the analogy with the
classical theory seems to halt.

Nevertheless a proof of theorem 5.5 can still be given.
Proof of Theorem 5.5 According to theorem 6.1, if (6.6) and (6.7) hold, it

is not possible to reduce these subspaces and therefore X must be minimal.
Conversely, if X is minimal, it cannot be possible to reduce S and S̄ any further.
This implies that (6.6) and (6.7) hold and therefore X is both observable and
constructible. 2

7. Stochastic Realization in the Absence of Feedback

When there is no feedback from from y to u, some of the results presented
above simplify considerably. For instance the construction of the oblique pre-
dictor space, somewhat complicated in the general setting, can be simplified
when there is no feedback. Moreover, specializing some definitions, we shall
also be able in this case to give a procedure to reduce the incoming and out-
going subspaces in order to achieve minimality. The following lemma will be
useful in this respect.

Lemma 7.1. Assume there is no feedback from y to u. Let E be the inno-
vation space of y defined by (5.9), then:

E||U+
t

[
E+

t |P−t
]

= {0}
Proof. Decomposition (4.5) can be rewritten in this causal case as:

P−t+1 =
(
P−t + Ut

)⊕ Et

Since Et = span {e(t)} it suffices to show that

E||U+
t

[
e(t + k) |P−t

]
= 0

for all k ≥ 0. As we have already pointed out e(t) ⊥ U+
t+1 and obviously

e(t) ⊥ P−t ∨ Ut, therefore the oblique projection is zero.
This fact can be verified directly since by absence of feedback

E
[
y(t) | P−t ∨ U+

t

]
= E

[
y(t) | (Ys)

−
t ⊕

(
U−t ∨ U+

t

)]
= E

[
y(t) | (Ys)

−
t

]⊕ E [y(t) | U]
= ŷs(t)⊕E

[
y(t) | U−t+1

]
= E

[
y(t) | P−t ∨ Ut

]

which proves that e(t) is orthogonal to U+
t+1 and hence e(t) ⊥ U. ¤
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We have seen that the wandering subspace generated by the innovation is
orthogonal to the whole input history in the absence of feedback. Recall that
the feedback-free property was defined from an input-output point of view,
apparently putting no restrictions on the state x. However it is straightforward
to see that:

Proposition 7.1. In the causal case, absence of feedback from y to u
implies absence of feedback from x to u.

Proof. Since X−t ⊆ P−t and P−t ⊥ U+
t | U−t , it is also true that

X−t ⊥ U+
t | U−t (7.1)

holds. ¤
Even in a non-causal situation, it is useful to restrict our attention to

realizations whose state space satisfies the condition (7.1). Let us consider the
subspace Z−t = Y−t ∨ X−t . Henceforth we shall only consider state spaces such
that

Z−t ⊥ U+
t | U−t (7.2)

and we say that the corresponding realizations are feedback free. This extended
notion of absence of feedback guarantees not only that the innovation e is
orthogonal to future inputs, but that so will be any wandering subspace Wt.
The following proposition states this formally.

Proposition 7.2. Let X be an oblique Markovian splitting subspace. The
wandering subspace W which generates X is orthogonal to the whole input
history if and only if the feedback-free condition (7.2) is satisfied.

Proof. (if) Recall that

St = X−t ∨ Y−t ∨ U−t ,

and, by (7.2),
St ⊥ U+

t | U−t .

From
St+1 = (St + Ut)⊕Wt

we have that Wt is contained in St+1 and therefore Wt ⊥ U+
t+1 | U−t+1; since

Wt ⊥ U−t+1 by construction, we obtain Wt ⊥ U+
t+1 and hence

Wt ⊥ U

which is the thesis.
(only if) Assume Wt ⊥ U, since St = U−t + W−

t it follows that

St ⊥ U+
t | U−t .

Therefore, since Z−t =
(
X−t ∨ Y−t

) ⊆ St, the thesis follows

Z−t ⊥ U+
t | U−t .

¤
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Remark 7.1. Note that, under hypothesis (7.2), also the incoming sub-
space St satisfies St ⊥ U+

t | U−t . It follows that the richness condition

U+
t ∩ St = {0}

is automatically satisfied as long as the input is coercive (Assumption 3.6).

The following result gives a somehow simpler geometric characterization
of the oblique Markovian splitting property in the absence of feedback.

Theorem 7.2. Let the symbols have the same meaning as above. Assume
there is no feedback from y to u and that (7.2) holds. The subspace X is
oblique Markovian splitting if and only if

E||U+ [S̄ | S] = E||U+ [S̄ |X]. (7.3)

Proof. The condition is obviously sufficient since Yt ∨Xt+1 ⊆ S̄t and, by
absence of feedback (7.2):

E[Yt ∨ Xt+1 | St + U+
t ] = E[Yt ∨ Xt+1 | St + Ut]

which by lemma (2.1) implies that

E||U+
t
[Yt ∨ Xt+1 | St] = E||Ut

[Yt ∨ Xt+1 | St]

and therefore
E||Ut

[Yt ∨ Xt+1 | St] ⊆ Xt.

To prove the other implication just note that by Theorem 4.6

Yt+k ⊆
(
Xt + U[ t, t+k )

)⊕W[ t, t+k )

and
Xt+k+1 ⊆

(
Xt + U[ t, t+k )

)⊕W[ t, t+k )

where the last sum is orthogonal from Proposition 7.2. It follows that for every
k ≥ 0

E‖U+
t
[Yt+k ∨ Xt+k+1 | St] ⊆ Xt

which is equivalent to (7.3). ¤
The following lemma is the equivalent of Lemma 6.1

Lemma 7.2. Let (S, S̄) and U+ be as defined above. Then

X = E||U+ [S̄ | S]

Hence every oblique MArkovian splitting subspace X is the oblique predictor
space for S̄, given S, along U+.

Proof. In the feedback free case, from Proposition 7.2we get W+ ⊥
(S + U+). Therefore, since F+ = U+ ∨W+,

E||U+ [X | S] = E||F+ [X | S] = X

where the last equality follows from Lemma 6.1. ¤
The following proposition specializes the concept of oblique intersection to

the case when there is no feedback.
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Proposition 7.3. Assume there is no feedback from y to u. Let X be an
oblique Markovian splitting subspace and let S, S̄ be the incoming and outgoing
subspaces attached to it. Then the following holds:

S̄ ⊥ S | ((
S̄ ∩ S

)
+ U+

)
(7.4)

Proof. Condition (7.3), is equivalent to (see Lemma 2.2)

E[S̄ | S + U+] = E[S̄ |X + U+]

which by (6.2) is precisely the oblique intersection property (7.4). ¤
Remark 7.3. It is worth to stress, at this point, that condition (3) (oblique

intersection) of Theorem 6.1 can be replaced by condition (7.4).

The following theorem gives a characterization of the oblique predictor
space in absence of feedback.

Theorem 7.4. In absence of feedback the oblique predictor space can be
computed by the formula

X+/− := E||U+ [Y+ |P−]. (7.5)

Proof. To show this let us just note that by (7.2) and by lemma 2.1

E‖Ut+h

[
Yt+h | P−t+h

]
= E‖U+

t+h

[
Yt+h | P−t+h

] ⊆ Xt+h

for any causal oblique markovian splitting subspace Xt+h and

E‖Ut+h

[
Xt+h+1 | P−t+h

]
= E‖U+

t+h

[
Xt+h+1 | P−t+h

]

in the absence of feedback; this implies the following:
(
X

+/−
t

)k
= E‖Ut

[
E‖Ut+1

[· · ·E‖Ut+k

[
Yt+k | P−t+k

] · · · | P−t+1

] | P−t
]

= E‖U+
t

[
E‖U+

t+1

[
· · ·E‖U+

t+k

[
Yt+k | P−t+k

] · · · | P−t+1

]
| P−t

]

= E‖U+
t

[
Yt+k | P−t

]

and hence

X
+/−
t =

∨
k≥0 E‖U+

t

[
Yt+k | P−t

]

= E‖U+
t

[
Y+

t | P−t
] (7.6)

¤

7.1. Scattering Pairs and Minimality (without Feedback). In this
section we shall give a procedure to reduce the state space when it is not
minimal, by reducing the incoming and outgoing subspaces using a two-steps
procedure similar to that described in [14].

The construction of a minimal Markovian splitting subspace can be done
by reducing (in the sense of subspace inclusion) the subspaces

(
S, S̄

)
without

violating properties (1), (2) and (3) (which in this case is equivalent to (7.4)) of
Theorem 6.1. We shall first state some technical results which will be needed
throughout the section.
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First of all, we shall introduce an orthogonal intersection property which
is implied by the oblique intersection.

Lemma 7.3. Let
(
S, S̄

)
satisfy the oblique intersection property

S ⊥ S̄ | ((S ∩ S̄
)

+ U+
)
.

Then the extended subspaces Seu := S ∨ U+ and S̄eu := S̄ ∨ U+ intersect
perpendicularly, i.e.

Seu ⊥ S̄eu |
(
Seu ∩ S̄eu

)
.

Proof. The proof follows readily from Theorem 2.1 in [14] ¤

Using this lemma we obtain the orthogonal decomposition of the ambient
space H valid in the feedback-free case

H = S⊥eu ⊕
(
X + U+

)⊕ S̄⊥eu (7.7)

Note that Y+ ∨ U+ ⊂ S̄eu and P− ∨ U+ ⊂ Seu must hold for every pair of
subspaces

(
S, S̄

)
attached to an oblique Markovian splitting subspace.

We shall construct a pair of subspaces
(
S1, S̄1

)
, which are contained in(

S, S̄
)

and which satisfies all the conditions of Theorem 6.1 by defining their
“extended” version and then by properly reducing them.

Define

S̄1
eu := S⊥eu ∨ Y+ ∨ U+ (7.8a)

S1
eu :=

(
S̄1

eu

)⊥ ∨ P− ∨ U+ (7.8b)

and also the related state space

X1
eu := S̄1

eu ∩ S1
eu (7.9)

Lemma 7.4. The pair of subspaces defined in (7.8) intersect perpendicu-
larly, i.e.

S̄1
eu ⊥ S1

eu | S̄1
eu ∩ S1

eu. (7.10)

Proof. Clearly H = S̄1
eu ∨ S1

eu and
(
S̄1

eu

)⊥ ⊂ S1
eu, which together implies

that S̄1
eu and S1

eu intersect perpendicularly. ¤

Of course from (7.8) we can see that S̄1
eu ⊆ S̄eu and from the fact that(

S̄1
eu

)⊥ = Seu ∩ (Y+)⊥ ∩ (U+)⊥ also S1
eu ⊆ Seu, which implies that

U+ ⊆ S̄1
eu ∩ S1

eu ⊆ X + U+.

Let us define the subspace X1 as follows:

X1 := X ∩ (
S̄1

eu ∩ S1
eu

)
= X ∩ X1

eu. (7.11)

We shall show that X1 is a minimal Markovian splitting subspace (clearly
contained in X). Before doing so we state the following technical lemma which
will be used in the following:
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Lemma 7.5. There holds

X1
eu = X1 + U+ (7.12)

Proof. Since X1 ⊂ X1
eu and U+ ⊂ X1

eu, clearly X1 + U+ ⊂ X1
eu. Con-

versely, since X1
eu ⊂ X + U+, any ξ ∈ X1

eu can be written as ξ = x + u+ with
x ∈ X, u+ ∈ U+. However since X1

eu ⊃ U+, then u+ ∈ X1
eu as well, and hence

x belongs to both X1
eu and X, so that x ∈ X1. ¤

Theorem 7.5. The pair of subspaces (S1, S̄1) defined as

S1 := S ∩ S1
eu

S̄1 := S̄ ∩ S̄1
eu

(7.13)

satisfy the conditions of theorem 6.1 and X1 = S1∩ S̄1. Therefore X1 is oblique
Markovian splitting subspace and is contained in X.

Proof. First of all let us just note that since X1 ⊆ X then X1 ⊆ S and
X1 ⊆ S̄, which implies that X1 ⊆ S1 and X1 ⊆ S̄1. Moreover P− ⊆ S1, Y+ ⊆ S̄1

and U+ ∩ S1 = {0}. Clearly X1 ⊆ S1 ∩ S̄1, let us show the converse. Since,
from Lemma 7.5,

S1
eu ∩ S̄1

eu = X1 + U+ ⊇ (
S1 ∩ S̄1

)
+ U+,

by the direct sum property we have that

S1 ∩ S̄1 ⊆ X1

and therefore

X1 = S1 ∩ S̄1 (7.14)

Proving the shift invariance properties
{

σS̄ ⊆ S̄

σ∗S ⊆ S

is just an easy check. The oblique intersection property is immediate from
(7.10) and (7.14). ¤

We have seen a construction which allows us to reduce an oblique Markov-
ian splitting subspace. We shall now prove that indeed this procedure yields
a minimal one.

Theorem 7.6. The subspace X1 defined above is a minimal oblique Mar-
kovian splitting subspace.

Proof. The proof follows the same lines as in the stochastic case. Namely
we assume that there exists an oblique Markovian splitting subspace, say Xo,
properly contained in X1. If such a subspace exists, then we could attach to
it a pair of subspaces (So, S̄o), which obviously satisfy So ⊆ S1 and S̄o ⊆ S̄1.
Then by the same argument we have already used we get that

(
S̄o

eu

)⊥ ⊆ So
eu
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and therefore So
eu ⊇

(
S̄o

eu

)⊥ ∨ P̄− ∨U+. But from the very definition of S1
eu we

have
S1

eu =
(
S̄1

eu

)⊥ ∨ P̄− ∨ U+ ⊆ So
eu

which implies that S1
eu = So

eu. Moreover since S1
eu ⊆ Seu, S̄1

eu = S⊥eu∨Y+∨U+ ⊆
S̄o

eu and therefore S̄1
eu = S̄o

eu which guarantees that S1 = So and S̄1 = S̄o and
therefore Xo = X1. ¤

7.2. Splitting property and Hankel Operators in the Absence of
Feedback. In this section we shall study observability and constructibility of
an oblique Markovian splitting subspace in the absence of feedback. The state
space property of X will be interpreted in terms of factorization of a certain
Hankel operator defined on the data space.

We first state, without proof, a lemma which provides a representation of
the observability and constructibility operators in the absence of feedback.

Lemma 7.6. Assume there is non feedback from y to u. Then

O∗λ = E‖U+ [λ | X] , λ ∈ Y+ (7.15)

and

Kξ = E
[
ξ | P−]

, ξ ∈ X. (7.16)

Let us consider also the Hankel operator H : Y+ → P− defined as

Hλ := E‖U+

[
λ | P−]

, λ ∈ Y+.

Proposition 7.4. The splitting property of X is equivalent to the factor-
ization H = KO∗.

Proof. For every λ ∈ Y+,

E
[
λ | P− + U+

]
= E

[
E

[
λ | (P− + X

)
+ U+

] | P− + U+
]

and by the splitting property,

E
[
λ | P− + U+

]
= E

[
E

[
λ | X + U+

] | P− + U+
]

which implies that

E‖U+

[
λ | P−]

= E‖U+

[
E

[
λ | X + U+

] | P−]

and since X ∩ U+ = 0 in the feedback-free situation, we have

E
[
λ | X + U+

]
= E‖U+ [λ | X] + E‖X

[
λ | U+

]

which implies that

E‖U+

[
λ | P−]

= E
[
E‖U+ [λ | X] | P−]

This is the factorization H = KO∗. ¤
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As usual we say that this factorization is canonical if O∗ has dense range
and if K is injective. Using the well known relations, valid for every bounded
linear operator 2

X = Range O∗ ⊕Ker O X = Range K∗ ⊕Ker K

we see that

Range O∗ = E‖U+

[
Y+ | X]

, Ker O = X ∩ (
E‖U+

[
Y+ | X])⊥

and
Range K∗ = E

[
P− | X]

, Ker K = X ∩ (
P−

)⊥

Therefore we shall call Range O∗ the observable component of X and its or-
thogonal complement Ker O the unobservable subspace. Similarly, Range K∗
is the constructible component of the state and Ker K = X ∩ (P−)⊥ is the
unconstructible subspace.

As we can see, in stochastic realization with inputs one is led to consider
a “mixture” of the concepts of constructibility and reachability3. Let us look
at the expression for the unconstructible component. Since by the feedback
free property P− = Y−s ⊕ U− we obtain:

Ker K =
[
X ∩ (

Y−s
)⊥]

∩
[
X ∩ (

U−
)⊥]

. (7.17)

We anticipate here that this concept of constructibility, which, as we shall
see later, is the one which is linked to minimality (in the sense of subspace
inclusion) does not in general imply constructibility of the stochastic compo-
nent and hence the condition is not strong enough to characterize stochastic
minimality.

In order to get a deeper understanding of the situation, let us define the
restricted operators

K∗r := K∗|Y−s (7.18)

and

R∗ := K∗|U− (7.19)

the former being related to the “stochastic” component and the latter to the
“deterministic” component.

Let us define

Xd := E
[
X | U−]

= RX, , Xs := E
[
X | W−]

= Rw X,
(7.20)

2Note that the norm of the oblique projection satisfies ‖O∗‖2 =
�
1− σ2

max

�−1
where

σmax is the maximum canonical correlation coefficient between U+ and X, which is strictly
less than 1 by the zero intersection property X ∩ U+ = {0}.

3This is the reason why in the beginning of the section we have used the word “con-
structibility” between quotes.
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where Rw is the “stochastic” reachability operator

Rw : X → W−
x → E [x | W−]

Recall that S = U− ⊕W−, which implies that Xd ⊥ Xs. Let us also note that
X ⊆ Xs ⊕ Xd. From

E
[
x | Y−s

]
= E

[
E

[
x | W−] | Y−s

]
, ∀x ∈ X

the restricted constructibility operator Kr can be factorized as follows:

Kr = KsRw (7.21)

where Ks is the usual “stochastic” constructibility operator.
In general neither K∗r nor R∗ will have dense range, or equivalently, nei-

ther Kr nor R will have a trivial kernel. The meaning of the constructibility
condition for the state space, is that the intersection of the two kernels must
be the zero random variable.

On the other hand, since all processes involved are assumed to be p.n.d.,
the joint system is reachable, (recall that X ⊂ S),4 and therefore Ker Rw ∩
Ker R = {0}.

The following fact clarifies the link between constructibility of the joint
model and constructibility of the “stochastic” component.

Proposition 7.5. If the “stochastic component” is constructible, i.e. Ker Ks =
{0}, then the joint model is so. Geometrically this condition reads as

Xs ∩
(
Y−s

)⊥ = {0}.
Proof. This is immediate since Ker K = Ker Kr ∩ Ker R. Therefore,

if x ∈ Ker K then, x ∈ Ker R, x /∈ Ker Rw and hence Rwx ∈ Ker Ks form
(7.21). ¤

Remark 7.7. Note that in general Ker K = {0} does not imply Ker Ks =
{0}. In fact, assume x = xs +xd. It might well happen that Krx = KsRwx =
KsRwxs = 0 while Rx = Rxd 6= 0. Geometrically

X ∩ (
P−

)⊥ = {0}
does not imply

Xs ∩
(
Y−s

)⊥ = {0}.
In fact we might have xs ∈ (Y−s )⊥, without x ∈ (P−)⊥.

In some sense this shows that the definition we have given of “minimality”
is not quite complete. Since however the concept of minimality is historically
linked to “dimension”, or more generally, to inclusion in the infinite dimen-
sional case, we shall introduce a further definition.

4Here we assume that there are no p.n.d. components, see [12] for a discussion on this
topic.
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Definition 7.8. An oblique Markovian splitting subspace X is strongly
minimal if it is minimal and Xs defined in (7.20) is constructible, i.e. Ker Ks =
{0}, or, equivalently,

Xs ∩
(
Y−s

)⊥ = {0}
It is apparent that minimality and strong minimality are equivalent in the

causal case, as the following proposition states.

Proposition 7.6. Let X be a minimal causal oblique Markovian splitting
subspace, then it is strongly minimal.

Proof. In the causal case W− is the space spanned by the past innovation
E−, which is nothing but Y−s ; therefore Xs ∩ (Y−s )⊥ = {0}. ¤

Using decomposition (7.20) one can define the observability operators

O∗s := E‖U+

[
Y+ | Xs

]
= E

[
Y+ | Xs

]
= E

[
Y+

s | Xs

]
(7.22)

and

O∗d := E‖U+

[
Y+ | Xd

]
= E‖U+

[
Y+

d | Xd

]
. (7.23)

It is easy to see that the following factorizations hold

O∗s = RwO∗

and
O∗d = RO∗.

Note that the observability conditions for the “deterministic” and “sto-
chastic” component, i.e. Ker Od = {0} and Ker Os = {0} do not in general
imply that Ker O = {0}, while the converse is always true since (Rw) |Xs

and
R |Xd

have trivial kernel by construction.
The geometric characterizations of minimality given above does not ad-

dress the question of strong minimality. This has clearly to do only with the
“stochastic” component and therefore it can be expressed geometrically in the
usual way as

Y−s ∨ X−s =
(
Y+

s ∨ X+
s

)⊥ ∨ Y−s .

where orthogonal complement is taken in H(w).

Theorem 7.9. Let X be an oblique Markovian splitting subspace and let
Seu = S + U+, S̄eu = S̄ ∨ U+. The following conditions are equivalent:

i) X is strongly minimal
ii) X is minimal and Ks is injective
iii) S̄eu = S⊥eu ∨ Y+ ∨ U+ and Y−s ∨ X−s = [H(w)ª (Y+

s ∨ X+
s )] ∨ Y−s

iv) S̄eu = S⊥eu ∨ Y+ ∨ U+ and Seu = [H(w)ª (Y+
s ∨ X+

s )] ∨ P− ∨ U+

Proof. i) and ii) are equivalent by definition. The fact that X is minimal
implies that it is observable, i.e. S̄eu = S⊥eu ∨ Y+ ∨ U+, and Ks injective is
equivalent to Y−s ∨ X−s = [H(w)ª (Y+

s ∨ X+
s )] ∨ Y−s , from which condition

iii). To show that iii) implies iv) just note that since Y−s ∨ X−s ∨ U = Seu,
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Y−s ∨X−s = [H(w)ª (Y+
s ∨ X+

s )]∨Y−s implies that Seu = [H(w)ª (Y+
s ∨ X+

s )]∨
Y−s ∨U = [H(w)ª (Y+

s ∨ X+
s )] ∨ P− ∨U+. Conversely, if iv) holds, Seu ªU =

[H(w)ª (Y+
s ∨ X+

s )]∨P−∨U+ªU, i.e. Y−s ∨X−s = [H(w)ª (Y+
s ∨ X+

s )]∨Y−s ,
which concludes the proof. ¤

8. Reconciliation with Stochastic Realization Theory

So far we have studied state space construction in the presence of exoge-
nous inputs, based on the concept of Oblique Markovian splitting subspace. In
this section we shall examine the relation between oblique splitting and the
classical construction of stochastic realization theory based on (orthogonal)
splitting. We shall show that, in the absence of feedback, stochastic realiza-
tions with inputs can be constructed directly from stochastic realizations of
the joint input-output process.

Let (SJ , S̄J) be an orthogonal scattering pair for the joint process
[
y> u>

]>,
where the subscript J stands for joint, and let us assume that there is no feed-
back form y to u. The following technical lemmas will be useful.

Lemma 8.1. Let
[
y> u>

]> be a stationary process, and assume that there
is no feedback form y to u. Then there exist joint Markovian splitting sub-
spaces XJ ≡ (SJ , S̄J) such that

SJ ⊥ U+ | U− (8.1)

Proof. We just need to show that there exists at least one. Let us con-
sider any causal realization, and let XJ be its state space. It is clear that by
causality XJ ⊂ Y− ∨U−, which implies that SJ = Y− ∨U− and therefore (8.1)
follows. ¤

Definition 8.1. In the sequel we shall say that joint Markovian splitting
subspaces (realizations) which satisfy (8.1) are feedback free.

Lemma 8.2. Let XJ ≡ (SJ , S̄J) be feedback free, then

SJ ∩ U+ = {0}.

Proof. From (8.1) E
[
SJ | (U−)⊥

]
⊥ U, so that any element s ∈ SJ

can be uniquely decomposed as s = ŝ + s̃ where ŝ := E [s | U−] ∈ U− and
s̃ ⊥ U. Let us assume that s ∈ U+; it follows that ŝ = E [E [ŝ | U+] | U−] and
therefore ŝ ∈ U+ ∩ U− which, recalling the sufficiently rich assumption (3.6),
implies ŝ = 0 and therefore s̃ ∈ U+; hence, s̃ = 0 and therefore s = 0, which
concludes the proof. ¤

We are now ready to state the following result.

Theorem 8.2. Let XJ := (SJ , S̄J) be a feedback free realization of the
stationary process

[
y> u>

]>. Then XJ is an oblique Markovian splitting
subspace.
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Proof. We just need to verify the conditions of Theorem 6.1; Y+ ⊆ S̄J and
P− ⊆ SJ by construction; the fact that SJ ∩ U+ = 0 follows from Lemma 8.2;
forward and backward shift invariance follow from the fact that (SJ , S̄J) is a
scattering pair and the oblique intersection property holds since, in particular,
also

SJ ⊥ S̄J | SJ ∩ S̄J

holds. ¤

However, as one may expect, XJ is not, in general, a minimal oblique
Markovian splitting subspace.

In order to construct a minimal oblique Markovian splitting subspace we
can follow the procedure described in the previous section.

Let us assume that XJ := SJ∩S̄J is a minimal Markovian splitting subspace
for the joint process. The reason for XJ being not minimal oblique splitting,
is that it includes the dynamics of the input process u. We want to “factor
out” this dynamics.

The basic idea in the reduction process is to consider first an “extended”
state space

XJe := XJ + U+

together with the associated “extended” pair (SJe, S̄Je), SJe := SJ +U+, S̄Je :=
S̄J ∨ U+. We proceed to reduce this subspace, subject to the constraint that
it must always contain U+.

Denote, as in the previous section, by (S1
Je, S̄

1
Je) the reduced pair, let

X1
Je := S1

Je ∩ S̄1
Je and let

X1 := XJ ∩
(
S1

Je ∩ S̄1
Je

)
= XJ ∩ X1

Je

Introduce the generating process, Wt, for S1
Je, as

(
S1

Je

)
t+1

=
(
S1

Je

)
t
⊕Wt.

Of course the subspaces {Wt} are pairwise orthogonal, i.e. Wt ⊥ Ws t 6= s.
Since X1

Je is (orthogonally) Markovian splitting, the usual state update
equation in geometric form holds

(
X1

Je

)
t+1

⊆ (
X1

Je

)
t
⊕Wt.

Using Lemma 7.5, the last equation can be written as

X1
t+1 + U+

t+1 ⊆
(
X1

t + U+
t

)⊕Wt. (8.2)

Theorem 8.3. The subspace X1 is a minimal oblique splitting subspace.
In fact we have {

X1
t+1 ⊆ (

X1
t + Ut

)⊕Wt

Yt ⊆ (
X1

t + Ut

)⊕Wt.

Proof. We show that (8.2) is equivalent to
{

X1
t+1 ⊆ (

X1
t + Ut

)⊕Wt

U+
t+1 ⊆ U+

t .
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In fact, if this was not the case, there would be elements x1
t+1 ∈ X1

t+1 ⊆ (SJ)t+1

which could be written as x1
t+1 = (x1

t +ut +wt)+u+
t+1 where (x1

t +ut +wt) ∈
(SJ)t+1, u+

t+1 ∈ U+
t+1, which would imply that u+

t+1 = x1
t+1− (x1

t +ut +wt) ∈
(SJ)t+1 contradicting the fact that (SJ)t+1 ∩ U+

t+1 = {0}. Similarly, since
Yt ⊆ (SJ)t+1 it follows that

{
Yt ⊆ (

X1
t + Ut

)⊕Wt

Ut ⊆ U+
t .

Since u is known, we can “drop” the second part of the state equations, i.e. the
component lying on U+ and end up with the equation state din the Theorem.
This equation obcviously implies the oblique splitting property of X1.

Note that, by construction, X1 + U+ is the minimal splitting subspace
containing the future of the input process, which, as it turns out, corresponds
to the fact that X1 is the minimal subspace of XJ which is oblique splitting. ¤

It is natural to ask when a minimal (feedback free) Markovian splitting
subspace for the joint process is a minimal oblique Markovian splitting sub-
space. It turns out that this is true if and only if the input predictor space is
contained in the oblique Markovian splitting state.

Theorem 8.4. Let XJ be a (feedback free) minimal Markovian splitting
subspace for the joint process

[
y> u>

]> and let X
+/−
u := E [U+ | U−] be the

predictor space of the input process. Then X1 = XJ if and only if X
+/−
u ⊆ X1.

Proof. Since XJ is minimal it is constructible. Therefore, SJ = S̄⊥J ∨
U− ∨ Y−, which implies that SJ is minimal. By observability we have that

E
[
U+ ∨ Y+ | SJ

]
= XJ . (8.3)

On the other hand

E
[
U+ ∨ Y+ | SJ + U+

]
= X1 + U+. (8.4)

Equation (8.3) can be rewritten as

E [E [U+ ∨ Y+ | SJ + U+] | SJ ] = E
[
X1 + U+ | SJ

]
=

= X1 ∨ E [U+ | SJ ] =
= X1 ∨ E [U+ | U−] =
= X1 ∨ X

+/−
u .

(8.5)

Therefore XJ = X1 ∨X
+/−
u which implies that XJ = X1 if and only if X

+/−
u ⊆

X1. ¤
It is natural to ask what kind of situations may lead to such degeneracy. In
order to address this problem we shall make a finite dimensionality assumption
and work with the spectral representations of these spaces. We shall have to
refer the reader to [23] for details.

Let dẑ :=
[
dû> dŵ>]> be the spectral measure (i.e. the Fourier trans-

form [26]) of the joint stationary process
[
u>(t) w>(t)

]>. Let also (A,B, C,D, K)
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be a minimal (oblique) realization of y with state space X1 and let (Au,Ku, Cu, I)
be a minimal innovation representation (with state space X

+/−
u ) of u. The

spectral representations, X̂1, and X̂
+/−
u , of X1 and X

+/−
u with respect to the

spectral measure dẑ are given by:

X̂1 = row-span
{[

(zI −A)−1B (zI −A)−1 K
]}

(8.6)

and

X̂+/−
u = row-span

{[
(zI − (Au −KuCu))−1 Ku 0

]}
. (8.7)

We are now able to give precise conditions for X1 and XJ to be the same
space.

Proposition 8.1. Let (A,B,C, D,K) be a minimal (oblique) realization
of y with state space X1 and let (Au,Ku, Cu, I) be a minimal innovation rep-
resentation of u (with state space X

+/−
u ). Then X1 = XJ if and only if there

exist a nonsingular change of basis T such that:

TAT−1 =
[
Au −KuCu 0

∗ ∗
]

and

TB =
[
Ku

∗
]

, TK =
[
0
∗
]

The proof of this Proposition is a bit lengthy and will be given in another
publication.

9. Conclusions

In this paper we have presented the basic ideas for a comprehensive theory
of stochastic realization in the presence of exogenous inputs. The central
concept of Oblique Markovian Splitting Subspace leads in principle to state-
space construction and to a coordinate-free analysis of stochastic models with
inputs. Most of the ideas are applicable to the general case where feedback
is present, however there seem to be still some gaps to be filled, in particular
we need to understand better how to deal with mixed causality structures as
they occur in feedback interconnections where F (z) may be unstable. Some
new idea and additional work are needed.





Bibliography

[1] H. Akaike. Stochastic theory of minimal realization. IEEE Trans. Automat. Contr.,
19(6):667–674, 1974.

[2] H. Akaike. Markovian representation of stochastic processes by canonical variables.
SIAM J. Control, 13:162–173, 1975.

[3] P.E. Caines and C.W. Chan. Estimation, identification and feedback. In R. Mehra and
D. Lainiotis, editors, System Identification: Advances and Case Studies, pages 349–405.
Academic, 1976.

[4] A. Chiuso and G. Picci. On the ill-conditioning of subspace identification with inputs.
Tech. Report TRITA/MATH-01-OS5, Department of Mathematics, Royal Institute of
Technology, Stockholm, Sweden, 2001. submitted for pubblication.

[5] H. Dym and H.P. McKean. Gaussian Processes, Function Theory and the Inverse Spec-
tral Problem. Academic Press, New York, 1976.

[6] M.R. Gevers and B.D.O. Anderson. Representation of jointly stationary feedback free
processes. Intern. Journal of Control, 33:777–809, 1981.

[7] M.R. Gevers and B.D.O. Anderson. On jointly stationary feedback-free stochastic pro-
cesses. IEEE Trans. Automat. Contr., 27:431–436, 1982.

[8] C.W.J. Granger. Economic processes involving feedback. Information and Control, 6:28–
48, 1963.

[9] E.J. Hannan and D.S. Poskitt. Unit canonical correlations between future and past. The
Annals of Statistics, 16:784–790, 1988.

[10] T. Katayama and G. Picci. Realization of stochastic systems with exogenous inputs and
subspace system identification methods. Automatica, 35(10):1635–1652, 1999.

[11] W.E. Larimore. System identification, reduced-order filtering and modeling via canoni-
cal variate analysis. In Proc. American Control Conference, pages 445–451, 1983.

[12] A. Lindquist and G. Picci. Linear Stochastic Systems. ?, ?
[13] A. Lindquist and G. Picci. On the stochastic realization problem. SIAM Journal on

Control and Optimization, 17(3):365–389, 1979.
[14] A. Lindquist and G. Picci. Realization theory for multivariate stationary gaussian pro-

cesses. SIAM Journal on Control and Optimization, 23(6):809–857, 1985.
[15] A. Lindquist and G. Picci. A geometric approach to modelling and estimation of linear

stochastic systems. Journal of Mathematical Systems, Estimation and Control, 1:241–
333, 1991.

[16] A. Lindquist and G. Picci. Canonical correlation analysis approximate covariance ex-
tension and identification of stationary time series. Automatica, 32:709–733, 1996.

[17] A. Lindquist, G. Picci, and G. Ruckebush. On minimal splitting subspaces and markov-
ian representation. Mathematical Systems Theory, 12:271–279, 1979.

[18] P. Van Overschee and B. De Moor. Subspace algorithms for the stochastic identification
problem. Automatica, 29:649–660, 1993.

[19] P. Van Overschee and B. De Moor. N4SID: Subspace algorithms for the identification
of combined deterministic– stochastic systems. Automatica, 30:75–93, 1994.

[20] P.D.Lax and R.S.Phillips. Scattering Theory. Academic Press, NewYork, 1967.
[21] G. Picci. Stochastic realization of gaussian processes. Proc. of the IEEE, 64:112–122,

1976.

41



42 BIBLIOGRAPHY

[22] G. Picci. Geometric methods in stochastic realization and system identification. In CWI
Quarterly special Issue on System Theory, volume 9, pages 205–240, 1996.

[23] G. Picci. Oblique splitting susbspaces and stochastic realization with inputs. In
D. Prätzel-Wolters U. Helmke and E. Zerz, editors, Operators, Systems and Linear
Algebra, pages 157–174, Stuttgart, 1997. Teubner,.

[24] G. Picci. Stochastic realization and system identification. In T. Katayama and I. Sug-
imoto, editors, Statistical Methods in Control and Signal Processing, pages 205–240,
N.Y., 1997. M. Dekker.

[25] G. Picci and S. Pinzoni. Acausal models and balanced realizations of stationary pro-
cesses. Linear Algebra and its Applications, 205-206:957–1003, 1994.

[26] Y. A. Rozanov. Stationary Random Processes. Holden-Day, San Francisco, 1967.
[27] M. Verhaegen. Identification of the deterministic part of mimo state space models given

in innovations form from input-output data. Automatica, 30:61–74, 1994.


